
DRAFT: Coherence Developer Exercise Notebook
(Edition 1.0)

For Coherence Version 3.3

Brian Oliver
brian.oliver@oracle.com

Copyright © 2008 Oracle Corporation

© Copyright 2008, Oracle Corporation. 1 of 26

Introduction
Welcome to the Oracle Coherence Developer Exercise Notebook - a compendium of
step-by-step hands-on development exercises designed to lead you through the
process of understanding and integrating Oracle Coherence into Java and .NET based
applications.

While much of the information contained with in this notebook is available online, in
the Oracle Coherence Wiki, Forum and download package, this book organizes such
material into a step-by-step learning process, enabling you to become proficient with
Oracle Coherence, covering everything from downloading and installing Coherence
through to advance Grid processing.

© Copyright 2008, Oracle Corporation. 2 of 26

Exercise: Downloading Coherence (Java Edition)

Objective:
Download the latest version of Coherence (Java Edition) from www.oracle.com.

Duration:
10 minutes.

Prerequisite Exercises:
(none)

Other Prerequisites:
(none)

Knowledge:
Coherence (Java Edition) ships as a single zip file, typically called coherence.zip.

System Variables:
$DOWNLOADS_FOLDER$ = The path to the download folder.

$COHERENCE_ZIP$ = The downloaded Coherence filename.

Steps:
1. Open the following URL:

http://www.oracle.com/technology/software/index.html

2. In the “Middleware” section, select the “Coherence” link.
(You may need to log into your oracle.com account)

3. Click “Accept the License Agreement”.

4. Select the “Oracle Coherence Version x.y.z – Pure Java …” link to download
Coherence.

Once completed you should have a file called coherence-xyz.zip, from here on
referred to as $COHERENCE_ZIP$, that is around 10mb in size located in the
download folder of your choosing, from here on referred to as
$DOWNLOADS_FOLDER$.

Eg: If you have downloaded Coherence 3.3.1 into c:\downloads,
$COHERENCE_ZIP$ = coherence-331.zip and $DOWNLOADS_FOLDER$
= c:\downloads

© Copyright 2008, Oracle Corporation. 3 of 26

Exercise: Installing Coherence (Java Edition)

Objective:
Install Coherence (Java Edition).

Duration:
15 minutes.

Prerequisite Exercises:DRAFT: Coherence Developer Exercise Notebook (Edition
1.0)

Other Prerequisites:
1. Administration privileges to install software and set system environment

variables.

2. An understanding of how to use a command prompt (windows) or shell (unix),
including setting environment variables and creating and moving between folders.

3. A utility application to unzip the downloaded $COHERENCE_ZIP$. For
example; winzip or unzip

4. A working installation of a Java Software Development Kit (SDK) version 1.4.2
or above (for these exercises Java 5 is required)

5. The JAVA_HOME environment variable set to the base of the JDK installation.

6. JAVA_HOME/bin set in the system path variable.

7. Being able to successfully execute “java –version” from a system command shell
to determine the current version of Java that is installed. Should this step fail, you
must correctly install a Java Development Kit (JDK).

Knowledge:
To install coherence you simply need to unzip the distribution file, typically called
coherence.zip, into a folder of your choosing. Additionally it’s often desirable to set a
COHERENCE_HOME environment variable.

System Variables:
$DOWNLOADS_FOLDER$ = The path to the downloads folder.

$COHERENCE_ZIP$ = The downloaded Coherence filename.

$LIBRARIES_HOME$ = Path where any other Java Libraries your using have been
previously installed.

$COHERENCE_HOME$ = Path where Coherence was installed.

Steps:
1. Using your unzip utility application, unzip the Coherence zip file

© Copyright 2008, Oracle Corporation. 4 of 26

$COHERENCE_ZIP$ where it exists in the $DOWNLOADS_FOLDER$. This
will produce a folder called “coherence” in the $DOWNLOADS_FOLDER$.

2. [optional] Rename the “coherence” folder in the $DOWNLOADS_FOLDER$ to
reflect the version downloaded. Eg: If you downloaded Coherence version 3.3.1,
Rename the unzipped “coherence” to “coherence-3.3.1”.

3. [optional] Move the unzipped and possibly renamed “coherence” folder from
$DOWNLOADS_FOLDER$ into a suitable location for use in applications,
typically called the $LIBRARIES_HOME$. Eg: Move
c:\downloads\coherence-3.3.1 into c:\libraries

4. Define a system-level environment variable called COHERENCE_HOME that
points to the location of the unzipped Coherence folder. Eg: define
COHERENCE_HOME = c:\libraries\coherence-3.3.1

5. [unix only] Ensure all of the unix scripts in the $COHERENCE_HOME$/bin
folder are executable by executing the following;

On Unix (bash shell)

chmod a+x $COHERENCE_HOME/bin/*.sh

6. A correctly installed Coherence $COHERENCE_HOME$ folder will have the
following sub-folders;

bin
doc
examples
lib

© Copyright 2008, Oracle Corporation. 5 of 26

Exercise: Testing a Coherence Installation

Objective:
Ensure that an installation of Coherence will cluster Java processes together. Should
an installation not be capable of Clustering on a single machine, you may need to
reconfigure your network and or firewall settings.

Duration:
15 minutes (assuming a correctly configured network is available)

Prerequisite Exercises:
Exercise: Installing Coherence (Java Edition)

Other Prerequisites:
(None)

Knowledge:
Coherence uses a variety of network addresses and ports to enable communication
between clustered processes. Should these addresses and/or ports be unavailable, for
example, due to other applications using said addresses and ports or use of a firewall,
Coherence may be unreliable, fail to cluster or work at all.

By default Coherence assumes the following network addresses and ports to be
available.

Address / Port / Type Purpose

224.3.3.1 / 33389 / Multicast Cluster member discovery and broadcast.

localhost / 8088+ / Unicast Inter-process communication between cluster
members. (localhost is the local ip address, not
the loopback address)

Coherence ships with two simple command-line (shell-based) applications that can be
used to determine if Coherence will operate correctly. The first, called the ‘cache-
server’, is a simple application that hosts and manages data on behalf of other
applications in a cluster. The second, called the ‘coherence shell’, is a simple
application that enables a developer to access, process and update cached data within
a cluster, together with information about the said cluster.

By executing these applications on either a single host or several hosts, you can
determine if Coherence is operating correctly locally or across a network.

When an application uses Coherence out-of-the-box, objects placed in to Coherence
Caches are typically stored and managed in-process within the application.

However to increase availability of the said objects, typically to survive an application

© Copyright 2008, Oracle Corporation. 6 of 26

outage (either deliberate or accidental), Coherence may manage objects in-memory
but out of the application process, in what are called “Cache Servers”.

The purpose of a Coherence Cache Server is to manage application state, in a cluster,
outside of the application process. Much like a Database server, but with out the
requirement for storage.

This exercise ensures that Coherence-based applications that ship with Coherence
may cluster together, hence ensuring Coherence will run as expected.

System Variables:
$COHERENCE_HOME$ = Path where Coherence was installed.

Steps:
1. Open a Command Prompt (on Windows) or a new Terminal or Shell (on Unix).

2. Change to the path where Coherence is installed $COHERENCE_HOME$

cd $COHERENCE_HOME$

3. Execute the Cache Server application, located in the Coherence bin folder.

On Windows:

bin\cache-server.cmd

On Unix:

bin/cache-server.sh

After a short delay of around 3 seconds (while Coherence attempts to locate a cluster
to connect with) something like the following will be displayed.

java version "1.5.0_13"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_13-b05-237)
Java HotSpot(TM) Server VM (build 1.5.0_13-119, mixed mode)

2008-01-20 14:54:56.219 Oracle Coherence 3.3.1/389 <Info> (thread=main,
member=n/a): Loaded operational configuration from resource "jar:file:
…/lib/coherence.jar!/tangosol-coherence.xml"
2008-01-20 14:54:56.224 Oracle Coherence 3.3.1/389 <Info> (thread=main,
member=n/a): Loaded operational overrides from resource "jar:file:
…/lib/coherence.jar!/tangosol-coherence-override-dev.xml"

Oracle Coherence Version 3.3.1/389
Grid Edition: Development mode
Copyright (c) 2000-2007 Oracle. All rights reserved.

2008-01-20 14:54:56.531 Oracle Coherence GE 3.3.1/389 <Info> (thread=main,
member=n/a): Loaded cache configuration from resource "jar:file:
…/lib/coherence.jar!/coherence-cache-config.xml"

. . .

2008-01-20 14:55:00.679 Oracle Coherence GE 3.3.1/389 <Info> (thread=main,
member=1): Started DefaultCacheServer...

© Copyright 2008, Oracle Corporation. 7 of 26

SafeCluster: Name=n/a

Group{Address=224.3.3.1, Port=33389, TTL=4}

MasterMemberSet
 (
 ThisMember=Member(Id=1, Timestamp=2008-01-20 14:54:56.959,
Address=172.16.154.1:8088, MachineId=9729, Location=process:
251@Macintosh-2.local)
 OldestMember…
 ActualMemberSet…
)
 RecycleMillis=120000
 RecycleSet=MemberSet(Size=0, BitSetCount=0
)
)

Services
 (
 TcpRing…
 DistributedCache…
 ReplicatedCache…
 Optimistic…
 InvocationService…
)

Should the Member Id (in yellow above), be anything other than 1, this means the
Cache Server has clustered with one or more other Cache Servers on the network or
running locally on your host. While this is default behavior for Coherence – to cluster
with any other Coherence instances running locally or on a network – for these
exercises it is strongly advised to restrict Coherence to your own host. To achieve
this either disconnect from the network or disable networking on your host or perform
the Exercise: Configuring Coherence to run on a Single Host.

Should any errors or exceptions occur when starting the Cache Server, your network
settings may need to modified. Try each of the following one at a time, restarting the
Cache Server between each attempt;

a. If connected of a VPN, disconnect from it. By default most VPN networks are not
configured to permit multi-cast and some unicast traffic, and hence Coherence as
it is configured out-of-the-box, may not work. Coherence can be configured to
run across a VPN, but this requires some advanced settings. This will be covered
later.

b. If running a firewall, configure it to allow the above specified addresses and ports.

c. If you are still experiencing problems, unplug or disconnect from all networks.
This includes wireless and wired networks.

If all of the above fail, setup Coherence to run on a single host with the Exercise:
Configuring Coherence to run on a Single Host.

Should you received the warning like the following:

UnicastUdpSocket failed to set receive buffer size to 1428 packets (2096304
bytes); actual size is 44 packets (65507 bytes). Consult your OS
documentation regarding increasing the maximum socket buffer size.

© Copyright 2008, Oracle Corporation. 8 of 26

Proceeding with the actual value may cause sub-optimal performance.

You may continue to use Coherence for development. However, for testing, staging
and production uses, this issue will need to be resolved. Resolution is platform
dependant and beyond the scope of this document.

4. Open another Command Prompt (on Windows) or a new Terminal or Shell (on
Unix).

5. Change to the path where Coherence is installed $COHERENCE_HOME$

cd $COHERENCE_HOME$

6. Execute the Coherence Shell application, located in the Coherence bin folder.

On Windows:

bin\coherence.cmd

On Unix:

bin/coherence.sh

After a short delay, something like the following will be displayed.

** Starting storage disabled console **
java version "1.5.0_13"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_13-b05-237)
Java HotSpot(TM) Server VM (build 1.5.0_13-119, mixed mode)

. . .

Oracle Coherence Version 3.3.1/389
 Grid Edition: Development mode
Copyright (c) 2000-2007 Oracle. All rights reserved.

. . .
2008-01-26 18:32:59.245 Oracle Coherence GE 3.3.1/389 <Info>
(thread=Cluster, member=n/a): This Member(Id=2, Timestamp=2008-01-26
18:32:59.048, Address=192.168.1.89:8089, MachineId=26969, Location=process:
1183@Urbanville.home, Edition=Grid Edition, Mode=Development, CpuCount=2,
SocketCount=2) joined cluster with senior Member(Id=1, Timestamp=2008-01-26
18:32:21.227, Address=192.168.1.89:8088, MachineId=26969, Location=process:
1167@Urbanville.home, Edition=Grid Edition, Mode=Development, CpuCount=2,
SocketCount=2)

. . .
SafeCluster: Name=n/a

Group{Address=224.3.3.1, Port=33389, TTL=4}

MasterMemberSet
 (
 ThisMember=Member(Id=2, Timestamp=2008-01-26 18:32:59.048,
Address=192.168.1.89:8089, MachineId=26969, Location=process:
1183@Urbanville.home)
 OldestMember=Member(Id=1, Timestamp=2008-01-26 18:32:21.227,
Address=192.168.1.89:8088, MachineId=26969, Location=process:
1167@Urbanville.home)
 ActualMemberSet=MemberSet(Size=2, BitSetCount=2
 Member(Id=1, Timestamp=2008-01-26 18:32:21.227,

© Copyright 2008, Oracle Corporation. 9 of 26

Address=192.168.1.89:8088, MachineId=26969, Location=process:
1167@Urbanville.home)
 Member(Id=3, Timestamp=2008-01-26 18:32:59.048,
Address=192.168.1.89:8089, MachineId=26969, Location=process:
1183@Urbanville.home)
)
 RecycleMillis=120000
 RecycleSet=MemberSet(Size=0, BitSetCount=0
)
)

Services
 (
 TcpRing{TcpSocketAccepter{State=STATE_OPEN,
ServerSocket=192.168.1.89:8089}, Connections=[]}
 ClusterService{Name=Cluster, State=(SERVICE_STARTED, STATE_JOINED), Id=0,
Version=3.3, OldestMemberId=1}
)

Map (?):

7. Execute the following commands in the Coherence Shell

help
cache mycache
get message
put message “gudday”
size
get message
put message “this is cool”
get message
remove message
size
get message
put message “one more time”
bye

Questions:
1. If you run multiple Coherence Shells at the same time and use the same cache

(“mycache”), can each Coherence Shell observe changes made from another?
Why?

2. If you close each of the Coherence Shells (“bye”), and then restart them, is data
from the previous session still available? Why?

3. If you run another Coherence Cache Server and then kill the initial one started
(using CTRL-C or by closing the Command Console Window), is data still
available from the Coherence Shells? Why?

© Copyright 2008, Oracle Corporation. 10 of 26

Exercise: Configuring Coherence to run on a Single
Host

Objective:
Learn how to configure applications using Coherence to only cluster on a single host.

Duration:
15 Minutes

Introduction:
When developing applications in a team environment or where there are many
Coherence applications running on a network, it’s often useful or a requirement to
ensure that an application you’re developing using Coherence does not cluster with
other applications. While removing or disabling a network connection is effective,
it’s often not desirable if an application additionally requires network access, ie: to
connect to a Database or the Internet etc. Consequently you need to configure the
Coherence network layer to restrict cluster traffic and this clustering.

This exercise outlines how to ensure Coherence applications do not cluster with other
applications outside a single host.

Prerequisite Exercises:
Exercise: Testing a Coherence Installation

Other Prerequisites:
(none)

Knowledge:
The principle behind restricting Coherence clustering to a single host (or number of
hosts), is to restrict the cluster discovery traffic.

The simplest way to ensure the Coherence cluster discovery network traffic does not
leave a single host (or is contained within a single host), is to set the multi-cast packet
time to live (ttl) to 0 using the following JVM parameter:

-Dtangosol.coherence.ttl = 0

Solution Files:
tangosol-coherence-override.xml

Steps:
1. Open the cache-server.sh (unix) or cache-server.cmd (windows) files located in

$COHERENCE_HOME$/bin folder using your favorite text editor (on windows
use Notepad)

2. Change the line:

© Copyright 2008, Oracle Corporation. 11 of 26

JAVA_OPTS="-Xms$MEMORY -Xmx$MEMORY"

to read:

JAVA_OPTS="-Xms$MEMORY -Xmx$MEMORY –Dtangosol.coherence.ttl=0"

3. Apply the same changes to the coherence.sh (unix) and coherence.cmd (windows)
files in the $COHERENCE_HOME%/bin folder.

4. For your application, change the run profile to additionally provide the JVM
parameter;

-Dtangosol.coherence.ttl=0

Your Coherence-based clustering will now be restricted to a single host.
Additionally when you use Coherence the logging should show a ttl of 0.

Group{Address=224.3.3.1, Port=33389, TTL=0}

5. Alternatively you can place the provided tangosol-coherence-override.xml at the
front of your classpath. Coherence will use this file to override the default cluster
multicast settings.

© Copyright 2008, Oracle Corporation. 12 of 26

Exercise: Your first Coherence-based Java Application

Objective:
Develop a simple Java console-based application to access, update and removing
simple types of information from a Coherence clustered cache.

Duration:
30 minutes.

Prerequisite Exercises:
Exercise: Testing a Coherence Installation

Other Prerequisites:
(none)

Knowledge:
Unlike Client-Server applications, where client applications typically “connect” and
“disconnect” from a server application, Coherence-based Clustered applications
simply “ensure” they are in a Cluster, after which they may use the services of the
Cluster. More specially, Coherence-based applications typically do not “connect” to a
Cluster of applications; they become part of the Cluster.

Useful Tip:
To change the level of logging produced by Coherence, use the following JVM
parameter: -Dtangosol.coherence.log.level=level where level is a number between 0
and 9. The default is 5. A value of 0 means no logging. A value of 9 means
extremely verbose. A value of 3 is often useful enough for most application
development.

Solution Files:
YourFirstCoherenceApplication.java

Steps:
1. Ensure you’ve completed the Exercise: Testing a Coherence Installation and leave

both a Cache-Server and Coherence Console running.

2. In the Coherence Java Documentation (javadoc), shipped in the
$COHERENCE_HOME$/lib folder, investigate the methods available on the
CacheFactory class.

3. Develop a simple Java console application that uses the CacheFactory class to join
a cluster (using the ensureCluster method) and then leave the cluster (using the
shutdown method).

4. Extend your application to display (using the System.out.println) the Cluster
object returned from the “ensureCluster” method.

© Copyright 2008, Oracle Corporation. 13 of 26

5. Using javadoc, investigate the methods available on the “NamedCache” interface.

6. Extend your application to use the CacheFactory method “getCache” to acquire a
NamedCache for the cache called “mycache” (the same cache name used in
Exercise: Testing a Coherence Installation).

7. With the NamedCache instance, use the “get” method to retrieve the value for the
key “message” (the same key used in the Exercise: Testing a Coherence
Installation)

8. Output the value to the standard out using the System.out.println(…); method.

9. Using the running Coherence Shell, change the value of the key “message”. Re
run your application to see the changed values.

10. Rerun your application with the JVM parameter
“-Dtangosol.coherence.distributed.localstorage=false”. Is the output of the
application different from previous executions?

11. Shutdown all of your Cache Server and Coherence Shell instances then rerun your
application (with the above JVM parameter set). Is the output different?

Questions:
1. If you change the value of the “message” key in your application (using the “put”)

method, is the new value available via the Coherence Shell?

2. What does the JVM parameter
-Dtangosol.coherence.distributed.localstorage=false do to a Coherence Java
process?

© Copyright 2008, Oracle Corporation. 14 of 26

Exercise: Caching an Object (using Java Serialization)

Objective:
Create a simple domain object that can be placed into a Coherence Cache.

Duration:
30 minutes.

Prerequisite Exercises:
Exercise: Installing Coherence (Java Edition)

Other Prerequisites:
A solid understanding of the rules for Java Serialization.
http://java.sun.com/developer/technicalArticles/Programming/serialization/ has an
overview.

Knowledge:
Placing any non-primitive Object into a Coherence Cache requires the said class to be
Java Serializable, the reason being, such instances may need to be transported across
process boundaries – ie: between Java Virtual Machines, across networks or processes
on the same physical machine. The standard way to achieve such transport is to
Serialize, transmit and Deserialize the object. Coherence requires Objects placed in a
Cache to be Serializable.

Solution Files:
EndOfDayStockSummary.java

CacheAnObject.java

Steps:
1. Create a Java class called EndOfDayStockSummary that implements the

java.io.Serializable interface to capture the open, high, low, close and adjusted
close prices (in dollars) of a Stock (called a symbol) for a specific date together
with the trading volume. Example attribute definitions for the class could be as
follows;

private String symbol;
private long date;
private double openPrice;
private double highPrice;
private double lowPrice;
private double closePrice;
private double adjustedClosePrice;
private long volume;

2. Define a method called “getKey()” to return a String that is a combination of the

© Copyright 2008, Oracle Corporation. 15 of 26

http://java.sun.com/developer/technicalArticles/Programming/serialization/

symbol and date attributes.

3. Declare a serialVersionUID.

4. Define a public default constructor – EndOfDayStockSummary()

5. Define a public constructor that accepts values for all of the attributes specified
above.

6. Create a console application called CacheAnObject (which contains a main
method) that creates an instance of an EndOfDayStockSummary class and places
(using the NamedCache put method) the said instance into a Coherence cache
called “dist-eodStockSummaries” and then retrieves it to display on the console.

Questions:
1. What happens if you forget to implement a default no arguments constructor for

the EndOfDayStockSummary class? If you don’t know, comment it out and
attempt to run your application again.

© Copyright 2008, Oracle Corporation. 16 of 26

Exercise: Caching an Object (using ExternalizableLite)

Objective:
Understand how to improve the serialization performance of domain objects placed in
Coherence using the proprietary ExternalizableLite interface.

Duration:
30 minutes.

Prerequisite Exercises:
Execute the Coherence Shell application, located in the Coherence bin folder.

Other Prerequisites:
(none)

Knowledge:
Standard Java Serialization performance is often a significant bottleneck for
applications that communicate across process boundaries, especially those that
depend on networks. Java Serialization also produces serialization streams that are
often very verbose their binary format, typically containing much more information
than that required by an application or encoded in such a manner that it’s inefficient to
send across a network, construct and destruct in a Java heap (memory) that
consequently leads to increased garbage collection requirements.

To resolve some of these issues including; dramatically improving serialization
performance, reducing the binary format size and the impact on garbage collection,
Coherence provides an extension to the standard Java serialization interface – called
ExternalizableLite.

Extending the java.io.Serializable interface, the com.tangosol.io.ExternalizableLite
interface introduces two simple methods - readExternal and writeExternal -that permit
a developer to explicitly read and write serialized object attributes from provided low-
level byte-based DataInput and DataOutput streams respectively. By operating at the
byte-level, instead of the Object level as do the standard Java Serializable and
Externalizable interfaces, Coherence provides developers with greater control as to
how Objects are serialized and deserialized, often leading to significantly (5 to 10x)
smaller binary representations, faster serialization (10x) and less garbage collection.

To reduce the development effort to serialize and deserialize object attributes byte-at-
a-time with the provided DataInput and DataOutput streams respectively, use the
statically defined methods of the provided com.tangosol.util.ExternalizableHelper
class.

Recommendations:
1. Whenever possible, use the methods of the com.tangosol.util.ExternalizableHelper

class to implement the serialization and deserialization of object attributes in the
readExternal and writeExternal methods respectively.

© Copyright 2008, Oracle Corporation. 17 of 26

2. To safely serialize and deserialize Java Strings (that a represented in UTF), use
the com.tangosol.util.ExternalizableHelper readSafeUTF and writeSafeUTF
methods respectively.

Solution Files:
EndOfDayStockSummaryExternalizableLite.java

Steps:
1. Modify the EndOfDayStockSummary class from the Execute the Coherence Shell

application, located in the Coherence bin folder. to implement the
com.tangosol.io.ExternalizableLite interface.

2. Using the static methods defined on the com.tangosol.util.ExternalizableHelper
class and the non-static methods defined on the DataInput and DataOutput
streams, implement the readExternal and writeExternal methods of the
com.tangosol.io.ExternalizableLite interface.

3. Modify your CacheAnObject.java class from the Execute the Coherence Shell
application, located in the Coherence bin folder. to use the
EndOfDayStockSummary that implemented ExternalizableLite.

Questions:
1. What happens if the order of reading object attributes in the readExternal method

was different to the order in which the said attributes where written in the
writeExternal method?

2. How would you serialize and deserialize a boolean attribute?

3. How would you serialize and deserialize a Java 5 Enumerated Type?

4. How would you serialize and deserialize nullable attribute?

5. Are all Java 1.5+ serialized objects compatible with Java 1.4.2?

6. How would you serialize an object that contains one of each of the following Java
collections; a Linked List, a Tree Set and a Hashtable?

© Copyright 2008, Oracle Corporation. 18 of 26

Exercise: Understanding Cached Object Semantics
(are they Copies or References?)

Objective:
Understand the semantics of Coherence Caches, in particular whether they cache
copies of objects or references to objects.

Duration:
30 minutes.

Prerequisite Exercises:
Exercise: Caching an Object (using ExternalizableLite)

Other Prerequisites:
Knowledge of the Java memory model, including the concept of object references and
object cloning.

Knowledge:
The semantics of Coherence caches, in particular the type of object returned when
calling “get” on the NamedCache interface may differ between the types of caches
used. While this rarely causes any issues for developers, it’s important to know if you
make assumptions about what you’re expecting to be returned from a cache.

Solution Files:
CachedObject.java

CachedObjectSemantics.java

Steps:
1. In the CachedObjectSemantics.java application, ensure the definition of the

variable cacheName is as follows;

String cacheName = "dist-myCache";

2. Execute the CachedObjectSemantics.java application. What is the output?

3. Change the definition of the variable cacheName to be as follows;

String cacheName = "repl-myCache";

4. Execute the CachedObjectSemantics.java application. What is the output?

5. Change the definition of the variable cacheName to be as follows;

String cacheName = "local-myCache";

6. Execute the CachedObjectSemantics.java application. What is the output?

© Copyright 2008, Oracle Corporation. 19 of 26

7. Change the definition of the variable cacheName to be as follows;

String cacheName = "near-myCache";

8. Execute the CachedObjectSemantics.java application. What is the output?

Questions:
1. Each call to the NamedCache get(…) method on a cache based on the distributed

scheme returns a new copy of the originally cached object. Why?

2. Each call to the NamedCache get(…) method on a cache based on the replicated
scheme returns a reference to the originally cached object (in the JVM). Why?

3. Explain the behavior of the NamedCache get(…) method for caches based on a
near scheme.

© Copyright 2008, Oracle Corporation. 20 of 26

Exercise: Loading Data into a Cache

Objective:
Learn how to populate a Coherence Cache with domain objects read from text files.
Additionally discover the most efficient method of loading data into a Cache (in
sequence).

Duration:
2 Hours

Prerequisite Exercises:
Exercise: Caching an Object (using Java Serialization)

Exercise: Caching an Object (using ExternalizableLite)

Other Prerequisites:
A knowledge of reading and parsing text files using BufferedReaders, the String.split
method and Date parsing with a SimpleDateFormat.

Knowledge:
1. To open and close a text file in the variable called filename with a

java.io.BufferedReader, use the following;

BufferedReader in = new BufferedReader(new FileReader(filename));

your reading code here

in.close();

2. To split a String into an array of sub-strings based on a delimiter (say a comma),
use the following;

String[] parts = stringToSplit.split(“,”);

3. To parse a Date, formatted as a String in the format “yyyy-MM-dd” into a
java.util.Date instance, use the following;

SimpleDateFormat sdf = new SimpleDateFormat(“yyyy-MM-dd”);

Date date = sdf.parse(dateAsAString);

Solution Files:
CacheLoading.java

StopWatch.java

EndOfDayStockSummary.java

© Copyright 2008, Oracle Corporation. 21 of 26

EndOfDayStockSummaryExternalizableLite.java

The folder “endofdaystocksummaries”

Steps:
1. Develop a console application called CacheLoading to load all of the end of day

stock summaries contained in the folder “endofdaystocksummaries” into a single
Coherence cache called “eodss”. Reuse the EndOfDayStockSummary class from
the previous exercises.

2. Using the provided StopWatch class, determine how long it takes to “put” the
summaries into the cache and how many may be “put” per second. Run your
application using the following cluster configurations;

a. No Cache Servers Running

b. A Single Cache Server Running

c. Two Cache Servers Running

d. With the CacheLoading application configured with

-Dtangosol.coherence.distributed.localstorage = false

3. Modify your application to use the ExternalizableLite implementation of the
EndOfDayStockSummary class. What effect does this have on throughput?

4. Modify your application to use the NamedCache.putAll method instead of the
NamedCache.put method. What effect does this have on throughput?

5. Complete the following table with your results;

CacheLoading
Application
Configuration

No Cache Servers

 Throughput (per
sec)

One Cache Server

Throughput (per
sec)

Two Cache Servers

Throughput (per
sec)

Using the Java
Serialization version of
EndOfDaySummary

Using the Java
Serialization version of
EndOfDaySummary
with local storage
disabled

N/A

Using the
ExternalizableLite
version of
EndOfDaySummary

Using the
ExternalizableLite

N/A

© Copyright 2008, Oracle Corporation. 22 of 26

version of
EndOfDaySummary
with local storage
disabled

6. [Advanced] Modify your application to use multiple threads or multiple
CacheLoading instances to load the caches in parallel. Are there any performance
improvements? In a large cluster would you expect to see any throughput
improvement?

Questions:
1. Based on your results, what is the most efficient method of performing cache

loading?

2. Using the StopWatch class, determine the disk IO cost for loading the
EndOfDayStockSummary instances from disk. How does this compare with the
cost to load the instances into Coherence? Would loading the instances in parallel
(concurrently) effect the throughput?

3. How does multi-core CPU effect throughput?

4. Does re-running the CacheLoader many times without restarting Cache Servers
affect the throughput results? If so, why?

© Copyright 2008, Oracle Corporation. 23 of 26

Exercise: Observing Events in a Cache with
MapListeners

Objective:
Use Coherence MapListeners to observe cache entry changes.

Duration:
30 Minutes

Prerequisite Exercises:
Exercise: Loading Data into a Cache

Other Prerequisites:
Knowledge of the use and declaration of anonymous inner classes in Java. More
information can be found here:
http://java.sun.com/docs/books/tutorial/java/javaOO/nested.html

Knowledge:
Through the use of Coherence MapListeners and the standard Java Bean Event model,
it is possible to observe a Cache as entries are inserted, updated or deleted – in real
time.

To observe said changes in cache entries, simply register an implementation of the
com.tangosol.util.MapListener class using the addMapListener(…) methods on the
ObservableMap interface, implemented by instances of the NamedCache interface.

Solution Files:
EndOfDayStockSummaryMapListener.java

EndOfDayStockSummaryAbstractMapListener.java

EndOfDayStockSummaryAbstractMapListenerForORCL.java

EndOfDayStockSummaryMultiplexingMapListener.java

Steps:
1. Using the Coherence Java documentation, investigate the methods available to

register MapListeners on the ObservableMap interface.

2. Develop a Java console application that uses an anonymous inner class based on
the MapListener interface to display the EndOfDayStockSummary objects as they
are inserted. Start this application and then re-run the CacheLoading application
from the previous exercise.

3. Develop a Java console application that uses an anonymous inner class based on
the AbstractMapListener class to display the EndOfDayStockSummary objects as
they are inserted. Start this application and then re-run the CacheLoading
application from the previous exercise.

© Copyright 2008, Oracle Corporation. 24 of 26

4. Develop a Java console application that uses an anonymous inner class based on
the MultiplexingMapListener interface to display the EndOfDayStockSummary
objects as they are inserted. Start this application and then re-run the
CacheLoading application from the previous exercise.

5. Using the Coherence Java documentation, investigate the purpose and methods of
the MapEventFilter.

6. Modify the AbstractMapListener version of the application to use a
MapEventFilter to ensure only “insert” events are raised by Coherence in the
application.

7. Modify the AbstractMapListener version of the application to use a
MapEventFilter combined with an EqualsFilter to ensure only “insert” events for
“ORCL” stocks are raised by Coherence in the application.

8. [Advanced] Modify the AbstractMapListener version of the application to use a
MapEventFilter combined with an EqualsFilter to ensure only “insert” events for
“ORCL” stocks where the close price is above $40.00 are raised by Coherence in
the application.

Questions:
1. Does avoiding to override the onUpdate and onDelete events of the

AbstractMapListener class ensure that such events are not delivered?

2. What is the purpose of “lite events”?

3. What impact does MapListeners have on the throughput of cache updates
(observed from the CacheLoading times)?

4. What effect does increasing the number of threads on a distributed cache have on
the throughput of MapListeners? Use the following JVM parameter to increase
the number of threads (default workers is 0).

-Dtangosol.coherence.distributed.threads=1

© Copyright 2008, Oracle Corporation. 25 of 26

Exercise: Chat Application

Objective:
Develop a multi-user Chat application using Coherence.

Duration:
1 Hours

Prerequisite Exercises:
All previous exercises.

Hints:
1. Create a class to represent an individual message from a user in the chat. This

class should encapsulate the attributes such as, who the message is from, the time
the message was created, the text of the message (or content, that may include a
file), potentially the subject or group in which the message is “destined”.

2. Start simply, by allowing an end-user to start the application, specify their chat
name and then accept messages for a single “chat group”. The application will
need to register a listener on the Cache that is being used to store messages.

3. [Advanced] Add a command in the chat application to list messages from a
specified individual, sorted in the order in which the messages had been produced.

4. [Advanced] Add a command to allow a user to attach/send an arbitrary file to a
message.

5. [Advanced] Add a command to remove all messages from a specified chat user.

6. [Advanced] Add a command to save all messages to disk. Further add a
command to load (restore) existing messages from disk.

7. [Advanced] Add a command to count the number of messages from a specified
chat user.

© Copyright 2008, Oracle Corporation. 26 of 26

	Introduction
	Exercise: Downloading Coherence (Java Edition)
	Objective:
	Duration:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	System Variables:
	Steps:

	Exercise: Installing Coherence (Java Edition)
	Objective:
	Duration:
	Other Prerequisites:
	Knowledge:
	System Variables:
	Steps:

	Exercise: Testing a Coherence Installation
	Objective:
	Duration:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	System Variables:
	Steps:
	Questions:

	Exercise: Configuring Coherence to run on a Single Host
	Objective:
	Duration:
	Introduction:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	Solution Files:
	Steps:

	Exercise: Your first Coherence-based Java Application
	Objective:
	Duration:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	Useful Tip:
	Solution Files:
	Steps:
	Questions:

	Exercise: Caching an Object (using Java Serialization)
	Objective:
	Duration:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	Solution Files:
	Steps:
	Questions:

	Exercise: Caching an Object (using ExternalizableLite)
	Objective:
	Duration:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	Recommendations:
	Solution Files:
	Steps:
	Questions:

	Exercise: Understanding Cached Object Semantics (are they Copies or References?)
	Objective:
	Duration:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	Solution Files:
	Steps:
	Questions:

	Exercise: Loading Data into a Cache
	Objective:
	Duration:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	Solution Files:
	Steps:
	Questions:

	Exercise: Observing Events in a Cache with MapListeners
	Objective:
	Duration:
	Prerequisite Exercises:
	Other Prerequisites:
	Knowledge:
	Solution Files:
	Steps:
	Questions:

	Exercise: Chat Application
	Objective:
	Duration:
	Prerequisite Exercises:
	Hints:

